Effect of Prostaglandins E₂ and D₂ on Presynaptic NMDA Receptors in Rat Cerebral Cortex

L. N. Petrova, A. V. Gabrelian, I. V. Serkov, and S. O. Bachurin

Translated from *Byulleten' Eksperimental'noi Biologii i Meditsiny*, Vol. 144, No. 9, pp. 271-273, September, 2007 Original article submitted May 10, 2007

We studied the effect of prostaglandins on presynaptic NMDA receptors. Prostaglandin E_2 inhibited NMDA-induced $^{45}\text{Ca}^{2+}$ uptake by synaptosomes in low concentrations (IC $_{50}$ ~10 μ M), but potentiated it in higher concentrations. Prostaglandin D_2 increased $^{45}\text{Ca}^{2+}$ uptake by synaptosomes during stimulation of NMDA receptors. Our results indicate that prostaglandins D_2 and E_2 modulate function of presynaptic NMDA receptors.

Key Words: prostaglandins; presynaptic NMDA receptors; synaptosomes; ⁴⁵Ca²⁺ uptake

Astrocytes are the main source of prostaglandins (PG) in the brain. Synaptic release of glutamate is followed by a transient increase in [Ca2+]in in astrocytes. [Ca2+]in variations in astrocytes depend on neuronal activity and regulate PG formation from arachidonic acid (AA). Glutamate release, increase in [Ca²⁺]_{in}, and PG release are observed during activation of ionotropic and metabotropic glutamate receptors on astrocytes [4,13,14]. PG are also produced in neurons. Activation of NMDA receptors in neurons of the brain cortex in vitro is accompanied by stimulation of Ca2+ entry through NMDA receptors, activation of phospholipase A2, AA release, and formation of PGE₂ and PGF_{2a} [7]. PG produce various effects on the central nervous system (CNS). They are involved in neuronal transmission and development of neurodegenerative diseases (e.g., Alzheimer's disease). PGE₂ abolishes the neurotoxic effect of β-amyloid by suppressing Ca²⁺ current through L-type Ca²⁺ channels [12]. PGE₂, PGF_{2a}, and PGD₂ modulate activity of postsynaptic GABA receptors, increase the inhibitory influence of GABA and taurine, and potentiate the excitato-

Laboratory for Neurochemistry of Physiologically Active Substances, Institute of Physiologically Active Substances, Russian Academy of Sciences, Chernogolovka. *Address for correspondence:* plv@icp. ac.ru. L. N. Petrova

ry effect of glutamate and aspartate on guinea pig Purkinje cells. Purkinje cells carry a considerable number of PGD₂-binding sites. The content of PGD₂ in the brain is much higher compared to other PG. PGD₂ induces sleep, causes membrane depolarization in NE-115 neuroblastoma cells, and modulates Ca²⁺ current. PGF_{2a} binds to its specific receptor via G protein and potentiates activation of postsynaptic NMDA receptors by increasing [Ca²⁺]_{in} [8]. PGE₂ stimulates Ca²⁺-dependent secondary release of endogenous glutamate and aspartate in the presynapse, protects neurons in rat cerebral cortex from glutamate toxicity, and plays a role in the regulation of sleep via EP4 receptors [2,3,5,9].

Thus, the modulatory effect of PG can include pre- and postsynaptic centers in CNS. NMDA receptors play an important role in glutamate excitotoxicity in cortical and hippocampal neurons. Hyperactivation of NMDA receptors is accompanied by massive Ca²⁺ entry into the cell and increase in [Ca²⁺]_{in}. These changes are followed by activation of intracellular enzyme systems initiating cell degeneration and lysis.

Here we studied the effects of PGD₂ and PGE₂ on presynaptic NMDA receptors in rat cerebral cortex using the method of ⁴⁵Ca²⁺ uptake by synaptosomes in rat cerebral cortex during NMDA stimulation.

L. N. Petrova, A. V. Gabrelian, et al.

MATERIALS AND METHODS

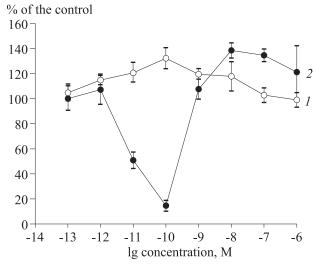
Synaptosomes were isolated from the cerebral cortex of newborn Wistar rats (9-10 days) by the method of F. Hajos [6]. The brain was homogenized in a 10-fold volume of cold 0.32 M sucrose (900 rpm) using a glass-Teflon homogenizer. The homogenate was centrifuged at 1500g for 10 min. The supernatant was centrifuged at 10,000g for 20 min. For accumulation of the radioactive label, the P₂ synaptosomal fraction was suspended in incubation buffer A containing 132 mM NaCl, 5 mM KCl, and 5 mM HEPES (pH 7.4, final protein concentration 1.5-2.0 mg/ml). Ca²⁺ concentration in the final solution was 1.25 mM (1.4 µCi/ml). NMDA (200 µM NMDA and 5 µM glycine) was used to stimulate ⁴⁵Ca²⁺ uptake by synaptosomes. After 3-min incubation with NMDA at 37°C, ⁴⁵Ca²⁺ uptake was stopped by filtering of the mixture through GF/B fiberglass filters (Whatman). The samples were washed 3 times with cold buffer solution B containing 145 mM HEPES, 10 mM Tris, and 54 mM Trilon B (pH 7.4). The measurements were performed in 3-4 parallel samples (3-4 independent experiments). The radioactivity was measured on a liquid scintillation β-counter. The amount of ⁴⁵Ca²⁺ accumulated in synaptosomes was calculated as the difference between label concentrations in the presence and absence of uptake stimulator (NMDA) and expressed in percents from the control.

Specific Ca²⁺ uptake was calculated as follows:

$$K_{(43/21)} = [(Ca_4 - Ca_3)/(Ca_2 - Ca_1)] \times 100\%,$$

where Ca_1 is $^{45}Ca^{2+}$ uptake in the control (in the absence of agonist and test compounds); Ca_2 is $^{45}Ca^{2+}$ uptake in the presence of agonist (NMDA); Ca_3 is $^{45}Ca^{2+}$ uptake in the presence of PG (without NMDA); and Ca_4 is $^{45}Ca^{2+}$ uptake in the presence of NMDA and PG.

The concentrations of PGE_2 and PGD_2 were $10^{-13}\text{--}10^{-6}\ M.$


The results were analyzed by Student's t test.

RESULTS

 45 Ca²⁺ uptake by synaptosomes during stimulation with NMDA is associated with activation of NMDA glutamate receptors. NMDA-induced 45 Ca²⁺ uptake by synaptosomes decreases after addition of the following NMDA receptor antagonists: MK-801 (IC₅₀ ~1 μM), CPP (IC₅₀ ~100 μM), memantine (IC₅₀ ~0.4 μM), and Mg²⁺ (IC₅₀ ~100 μM). Our results support the data that NMDA activates NMDA receptors in the P_2 synaptosomal fraction of rat cere-

bral cortex [1]. PGE₂ in low concentrations (10⁻¹¹-10⁻¹⁰ M) inhibited NMDA-induced ⁴⁵Ca²⁺ uptake by synaptosomes. The maximum inhibition of ⁴⁵Ca²⁺ uptake by synaptosomes was observed in the presence of 10⁻¹⁰ M PGE₂ (IC₅₀ 10 μM). PGE₂ in concentrations of 10⁻⁸-10⁻⁶ M potentiated ⁴⁵Ca²⁺ uptake by synaptosomes from rat cerebral cortex during NMDA stimulation. The maximum stimulation of ⁴⁵Ca²⁺ uptake by synaptosomes was observed in the presence of 10⁻⁸ M PGE₂ (Fig. 1).

PGE, dose-dependently stimulates glutamate release in the presynapse, thus increasing NMDAinduced cytotoxicity [9]. PGE2 increases cytotoxicity induced by NMDA via activation of EP2 receptors on cultured rat cortical neurons, activates adenylate cyclase, and increases intracellular cAMP concentration [10]. We found that PGE, in concentrations of 10⁻⁸-10⁻⁶ M increases ⁴⁵Ca²⁺ uptake by synaptosomes during stimulation with NMDA. It can be suggested that PGE2 in the specified concentration range stimulates glutamate release in synaptosomes. These changes result in additional activation of NMDA glutamate receptors and increase in ⁴⁵Ca²⁺ uptake by synaptosomes. Our suggestion is consistent with published data that PGE2 increases NMDA toxicity via AMPA/kainate receptors, NMDA receptors, and metabotropic receptors [11]. It should be emphasized that PGE₂ has a protective effect on NMDA-induced cytotoxicity. PGE2 inhibits the intracellular mechanisms associated with glutamate toxicity. PGE₂ stimulates EP2 receptors, which contributes the decrease in NO production [3,5]. The protective effect of PGE₂ is related to activation of EP2 and EP4 receptors, which results in the increase in cAMP concentration and activation of protein kinase. This discrepancy probably

Fig. 1. Effects of PGD $_2$ (1) and PGE $_2$ (2) on 45 Ca $^{2+}$ uptake by synaptosomes of rat cerebral cortex during stimulation with NMDA.

arises from the fact that PGE₂ affects various subtypes of PGE, receptors. It was hypothesized that the protective effect of PGE₂ is mediated by EP2 and EP4 receptors and results from the increase in cAMP concentration. PGE, decreases cAMP concentration via EP3 receptors. PGE2 does not have protective activity under these conditions [2]. Further studies are required to evaluate the mechanism underlying the opposite effects of PGE₂ on CNS via NMDA receptors. We showed that PGE₂ in low concentrations (10⁻¹¹-10⁻¹⁰ M) inhibits NMDA-induced 45Ca2+ uptake by synaptosomes of rat cerebral cortex. PGE₂ in the specified concentration range probably protects NMDA receptors by inhibiting ⁴⁵Ca²⁺ uptake by synaptosomes. PGE₂ can produce inhibitory or stimulatory effect on NMDA-induced ⁴⁵Ca²⁺ uptake by synaptosomes of rat cerebral cortex depending on the concentration of this compound.

PGD₂ increased ⁴⁵Ca²⁺ uptake by synaptosomes. ⁴⁵Ca²⁺ uptake by synaptosomes increased most significantly under the influence of PGD₂ in a concentration of 10⁻¹⁰ M (132.2% of the control). Similarly to PGE₂, PGD₂ in concentrations of 10⁻⁸-10⁻⁶ M can potentiate NMDA receptors, which leads to stimulation of glutamate release and increased ⁴⁵Ca²⁺ uptake by synaptosomes.

Our results indicate that PGE₂ protects NMDA receptors due to inhibition of ⁴⁵Ca²⁺ uptake by synaptosomes, but in high concentrations it potentiates the toxic effect of NMDA. The effect of PGE₂ is probably associated with expression of various subtypes of receptors (EP2, EP3, and EP4). PGD₂ al-

ways potentiates NMDA receptors. We conclude that PGE₂ and PGD₂ modulate synaptic transmission in CNS via presynaptic NMDA receptors.

This work was supported by ISTC (grant No. 2368).

REFERENCES

- L. N. Petrova and S. O. Bachurin, *Byull. Eksp. Biol. Med.*, 142, No. 7, 51-54 (2006).
- A. S. Ahmad, M. Ahmad, A. J. de Brum-Fernandes, and S. Dore, *Brain Res.*, 1066, No. 1-2, 71-77 (2005).
- A. Akaike, S. Kaneko, Y. Tamura, et al., Ibid., 663, No. 2, 237-243 (1994).
- P. Bezzi, G. Carmignoto, L. Pasti, et al., Nature, 391, 281-285 (1998).
- C. Cazevieille, A. Muller, F. Meynier, et al., Neurochem. Int., 24, No. 4, 395-398 (1994).
- 6. F. Hajos, Brain Res., 93, No. 3, 485-489 (1975).
- 7. L. S. Lerea, N. G. Carlson, M. Simonato, *et al.*, *J. Neurosci.*, **17**, No. 1, 117-124 (1997).
- 8. T. Muratani, M. Nishizawa, S. Matsumura, et al., J. Neurochem., **86**, No. 2, 374-382 (2003).
- I. Nishihara, T. Minami, Y. Watanabe, et al., Neurosci. Lett., 196, No. 1-2, 57-70 (1995).
- T. Takadera and T. Ohyashiki, *Life Sci.*, 78, No. 16, 1878-1883 (2006).
- M. E. Turnbach and A. Randich, *Pain*, **97**, No. 1-2, 127-137 (2002).
- T. Yagami, H. Nakazato, K. Ueda, et al., Brain Res., 959, No. 2, 328-335 (2003).
- L. C. Yang, M. Marsala, T. L. Yaksh, *Neuroscience*, 75, No. 2, 453-461 (1996).
- M. Zonta, A. Sebelin, S. Gobbo, et al., J. Physiol., 553, No. 2, 404-414 (2003).